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Abstract: We present a variant of warped D-brane inflation by incorporating multiple

sets of holomorphically - embedded D7-branes involved in moduli stabilization with extent

into a warped throat. The resultant D3-brane motion depends on the D7-brane configura-

tion and the relative position of the D3-brane in these backgrounds. The non-perturbative

moduli stabilization superpotential takes the racetrack form, but the additional D3-brane

open string moduli dependence provides more flexibilities in model building. For concrete-

ness, we consider D3-brane motion in the warped deformed conifold with the presence of

multiple D7-branes, and derive the scalar potential valid for the entire throat. By explicit

tuning of the microphysical parameters, we obtain inflationary trajectories near an inflec-

tion point for various D7-brane configurations. Moreover, the open racetrack potential

admits approximate Minkowski vacua before uplifting. We demonstrate with a concrete

D-brane inflation model where the Hubble scale during inflation can exceed the gravitino

mass. Finally, the multiple sets of D7-branes present in this open racetrack setup also

provides a mechanism to stabilize the D3-brane to metastable vacua in the intermediate

region of the warped throat.
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1 Introduction and summary

The inflationary paradigm [1] offers a compelling solution to some of the most puzzling

features of standard big-bang cosmology, notably the flatness and the horizon problems.

Since its inception, a myriad of effective field theory based models of inflation have been

proposed. In the coming decade, increasingly precise cosmological data will help to con-

strain the “theory space” of inflation to the extent that hard data may enable us to disfavor

or even rule out some of the popularly proposed models. Thus, it is of interest to examine

what are the generic predictions of inflation, and what merely are the consequences of

specific models.
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In this regard, a particularly important feature of inflation is its ultra-violet sensitivity.

This feature is most clearly exemplified by the fact that mass dimension six, Planck scale

suppressed corrections to the inflation potential can give order one contributions to the

slow-roll parameters and hence significantly alter the dynamics of inflation. Therefore, a

truly predictive model of inflation would require a consistent microscopic theory of quan-

tum gravity, such as string theory, for completion. It is then natural to ask if embedding

inflation into a microscopic framework can impose restrictions on the inflationary “theory

space”, thus enabling us to sharpen the predictions of inflation. This question is especially

interesting in the context of string cosmology since the construction and predictions of

string inflationary models are intimately tied to the microphysics of moduli stabilization.

This sensitivity on the details of string compactifications manifests in various forms in

recent studies of string inflation, e.g., in addressing the supergravity η problem [2–7], in

limiting and extending the physical field range of the inflaton field [8–15], and in determin-

ing the end of inflation and multi-field effects [16–21]. Given that string theory is not only

a quantum theory of gravity, one might wonder if the microphysics of moduli stabilization

relevant for the above cosmological issues may also leave its footprints on particle physics.

If so, embedding inflation into string theory may provide us with some interesting and

unexpected links between cosmology and particle physics data.

An interesting relation which illustrates this latter point was pointed out by [22]. It

was found that in the simplest inflationary models based on the KKLT mechanism [23] of

moduli stabilization, the Hubble scale during inflation is bounded by the present value of

the gravitino mass, i.e., H > m3/2. This relation, which ties the amplitude of primordial

gravitational waves to the scale of supersymmetry breaking, appears to be rather generic1

among the concrete moduli stabilization mechanisms studied to date. Indeed, it has proven

to be challenging to construct a natural string inflationary model with low scale supersym-

metry and detectable primordial tensors. As also discussed in the original work [22], this

gravitino mass bound can be evaded with fine-tuning and additional ingredients beyond

the minimal scenario of KKLT (for recent work elaborating further on this point, see [24–

29]). These previous studies, however, focussed on models where the inflaton is a Kähler

modulus. As some of the most explicit string inflation models often involve branes, it is

worthwhile to revisit this issue in the context of brane inflation [30] where the inflaton

comes from the open string sector.

In this paper, we present a variant of warped D-brane inflation, with the above moti-

vation behind. In the original KKLT scenario, a single set of holomorphically-embedded

D7-branes as minimally needed to stabilize the universal Kähler modulus was introduced.

However, there can a priori be non-perturbative contributions from more than one gauge

sector. Having multiple hidden gauge sectors is not atypical in string compactifications

and in fact crucial in the “racetrack” mechanism of moduli stabilization [31–34]. Thus, we

consider a simple generalization of [2] by introducing multiple stacks of moduli-stabilizing

D7-branes with extent into the warped throat where the inflationary D3-brane resides. The

resultant non-perturbative superpotential resembles the one appearing in racetrack infla-

1Its specific form may differ somewhat among known moduli stabilization mechanisms, see, e.g., [24].
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tion [35], but now with additional dependence on the D3-brane moduli which we identify as

the inflaton. There are several advantages of considering this “open racetrack” scenario. As

suggested in [22], extending [23] to a racetrack form allows for an approximate Minkowski

vacuum (instead of an AdS minimum as in KKLT) before uplifting. The gravitino mass is

then disentangled from the height of the uplifted potential and thus the bound H > m3/2

can be evaded. In comparison to inflation on a “closed racetrack”, brane inflation on an

“open racetrack” offers more flexibilities in model building. In particular, while a race-

track superpotential can circumvent the bound in [22], explicit inflationary model building

realizing the solution in [22] with closed string moduli has proven to be non-trivial [24–

29] since the inflaton field is in the same Kähler sector being stabilized by the racetrack

potential. In some constructions, additional terms (or novel moduli dependence2) in the

non-perturbative superpotential and/or extra global symmetries were invoked to ensure

that closed string racetrack inflation can take place. As we shall see, having the inflaton in

the open string sector separates the tuning required for inflation from that of the minimum

of the pre-uplifted moduli stabilization potential. This flexibility allows us to consider sev-

eral scenarios depending on the configuration of D7-branes and the relative position of the

mobile D3-brane in these backgrounds. In some cases, the forces on the D3-brane exerted

by different stacks of D7-branes balance off each other, resulting in a metastable D3-brane

vacuum at a finite tunable distance from the infrared end of the warped throat. Inflation

can then be viewed as accidental in this setup when additional uplifting sources and appro-

priate choices of compactification data are chosen such that the metastable minimum turns

into an inflection point. Finally, while the main focus of this work is inflation, our mecha-

nism of obtaining metastable D3-brane vacua may have more general applicability, e.g., in

particle physics issues when the Standard Model particles and/or hidden sector fields are

localized on the worldvolume of D-branes. We leave the studies of these applications to

future work.

This paper is structured as follows. In section 2, we discuss in detail the non-

perturbative potential generated by gaugino condensates on multiple stacks of D7-branes

in a warped throat. In section 3, we use the D7 brane embedding of [37] to illustrate how a

single field inflatonary potential, valid for the entire deformed conifold, can arise from such

racetrack superpotential. In section 4, we review the bound pointed out in [22] and explain

how it can be evaded in the open racetrack setup. In section 5, we present several scenar-

ios of D7-brane configurations and some explicit parameter sets for each case such that a

sustained period of inflation can take place, including an example where the bound [22]

can be circumvented. We relegate some technical details to a series of appendices.

2 Non-perturbative potential in warped throats

In this section we shall begin by collecting some results of flux compactifications [38–43],

in particular, the effective 4D N = 1 supergravity action that are useful for describing

2For example, in [28, 29], the gauge kinetic function of the worldvolume gauge fields on some exotic

D-branes found in [36] was used.
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warped brane inflation. This review also serves to set our notation. We will also present a

detailed form of the scalar potential valid in the entire warped deformed conifold.

The N = 1 F-term scalar potential in supergravity is given by

VF (ρ, ρ̄, zα, z̄α) = eκ
2K
[
KΣΩDΣWDΣW − 3κ2|W |2

]
, κ2 = M−2

P ≡ 8πG , (2.1)

DΣW = ∂ΣW + κ2(∂ΣK)W . (2.2)

Here the indices {ZΣ} ≡ {ρ, zα} where zα are the complex coordinates of the compact

space, and ρ = σ + iξ is the complex Kähler modulus, whereas W ≡W (zα, ρ) is the holo-

morphic superpotential. For simplicity, we shall consider in this paper the situation where

the compact Calabi-Yau space only has a single Kähler modulus. The Kähler potential K
in the presence of the D3 brane is given by [43, 44]:3

κ2K(zα, z̄α, ρ, ρ̄) = −3 log [ρ+ ρ̄− γk(zα, z̄α)] ≡ −3 logU(zα, z̄α, ρ, ρ̄), (2.3)

where the constant γ = σ0T3

3M2
P

with σ0 the stabilized value of σ when the D3 brane assumes its

stabilized position, and k(zα, z̄α) is the Kähler potential of the ambient Calabi-Yau space

where the mobile D3 brane moves. This allows us to further expand the expression for the

F -term scalar potential (2.1) in terms of the inverse Kähler metric of the ambient Calabi-

Yau, and the derivatives with respect to the local coordinates and the Kähler modulus [3]:

VF (zα, z̄α, ρ, ρ̄) =
κ2

3[U(zα, z̄α, ρ, ρ̄)]2
×

×
{[
U(zα, z̄α, ρ, ρ̄) + γkγδ̄kγkδ̄

]
|W,ρ|2 − 3

(
WW,ρ +WW ,ρ̄

)}

+
κ2

3[U(zα, z̄α, ρ, ρ̄)]2
×

×
{(

kαδ̄kδ̄W ,ρ̄W,α + kᾱδkδW,ρW ,ᾱ

)
+

1

γ
kαβ̄W,αW ,β̄

}
. (2.4)

Notice that the second line in (2.4) comes strictly from the dependence of the superpotential

W (zα, ρ) on the mobile D3 position, which in turns generates a non-trivial potential for its

trajectory.

The superpotential we shall consider in this paper takes the form

W (zα, ρ) = W0 +A(zα)e−a1ρ +B(zα)e−a2ρ, (2.5)

where W0 ≡
∫
G ∧ Ω is the Gukov-Vafa-Witten flux superpotential [52]. W0 depends on

the dilaton-axion and the complex structure moduli, which we assumed to be fixed by the

bulk fluxes [43]. We shall further assume that in the following we can rotate the phase of

the flux superpotential such that W0 ∈ R. The remaining contributions in W (zα, ρ) are

non-perturbative contributions arising from two separate Euclidean D3 instantons or D7

gaugino condensates, which we shall discuss in detail momentarily. The superpotential (2.5)

3The Kahler potential is modified in the strongly warped limit. We refer the readers to some recent

work [45–51] for a discussion of the subtle issues involved in the derivation of warped Kahler potential.
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resembles the one used in “Racetrack Inflation” [35]. However, in contrast with such model

where the complex Kähler modulus ρ acts as the inflaton, the canonical inflaton here is

identified with the radial position of a mobile D3 brane. The functions A(zα) and B(zα)

typically depend holomorphically on the complex structure moduli (which we assume to be

stabilized perturbatively by the flux potential W0) and also on the position moduli {zα}
of the mobile D3 brane.

In the case of a singular conifold, the explicit dependences on the D3 position for A(zα)

and B(zα) has been calculated in [53] (see also earlier work [54, 55]), and are given by

A(zα) = A0

[
f1(z

α)

f1(0)

]1/n1

, B(zα) = B0

[
f2(z

α)

f2(0)

]1/n2

, a1,2 =
2π

n1,2
. (2.6)

Here n1,2 > 1 is the number of D7s (or n1,2 = 1 for Euclidean D3 instanton) on each brane

stack. The precise values of the complex constants A0 and B0 depend on the stabilized

complex structure moduli as well as the dynamical scales on the D7-branes; whereas the

holomorphic functions f1(z
α) and f2(z

α) are the embedding functions of the supersymmet-

ric four cycles wrapped by the D7-branes or the Euclidean D3-branes. The dependence

on zα essentially comes from the fact that the conifold throat is attached to a compact

bulk manifold, the mobile D3 brane backreacts on the holomorphic four cycle wrapped by

the moduli-stabilizing D7s. This in turns induces a small but non-trivial force on D3. An

inflationary phase can be then generated if this force balances off the contributions to the

inflaton mass due to moduli stabilization effects [6].

As in [23], we have implicitly assumed that the translational modes of D7 branes have

been stabilized (e.g., by fluxes) along the symmetry enhanced locus, which allows for gaug-

ino condensation to take place. In this paper, we shall consider a simplifed configuration

such that the two stacks of D7s extending radially in the conifold do not intersect with

each other. Thus, possible additional unsaturated fermionic zero modes that arise at the

7-7 intersections can be avoided as they would cause the gaugino condensates, which are

vital in stabilizing the Kähler modulus ρ, to vanish [54].

Moreover, the functional dependence of the D7 gaugino condensate on the mobile D3

position in the singular conifold in fact holds for the full deformed conifold, despite the

fact that almost all of the known supersymmetric D7 embeddings in the singular conifold

require extra worldvolume flux along the compact directions to remain supersymmetric in

the full deformed conifold [56]. In appendix A, we shall discuss from both the closed and

the open string perspectives that the presence of such extra worldvolume gauge field does

not affect the general form of D7 gaugino condensate given in (2.6).

There are several motivations for introducing a second stack of D7 gaugino condensate.

First, a supersymmetric local minimum for the mobile D3 can be obtained between the

two stacks of moduli-stabilizing D7 branes where their forces on the D3 are balanced.

In contrast to the single stack case where the D3-brane is stabilized at the end of the

throat [18], one can now dynamically stabilize the D3 position moduli in the intermediate

region of the deformed conifold. This suggests a variant of the warped D-brane inflation

scenario [57] with several qualitatively different properties. In comparison with the usual

inflationary models constructed from the simplest KKLT scenario, where a supersymmetric

– 5 –
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AdS minimum is uplifted to a dS one; having an extra gaugino condensate allows us to start

with a Minkowski vacuum instead. As discussed in [22], this has an important consequence

in evading the constraint given in [22], making it possible to obtain, at least in principle,

high scale inflation and low energy supersymmetry breaking simultaneously. We shall

discuss in more detail this gravitino mass bound in section 4. Furthermore, the D3-vacua

found here and in [18], together with the D7-brane vacua in flux compactifications explored

in [58] constitute a rich picture of an open string landscape. The stabilization of open

(versus closed) string moduli is of phenomenological importance as the Standard Model

is realized on the worldvolume of D-branes (and their intersections) [59] in Type IIB flux

compactifications [38]. In particular, the masses of the light open string modes and their

couplings to the closed string degrees of freedom depend on the distance between the branes

and the local geometry at which the branes are stabilized. While the focus of the current

work is inflation and so we will not dwell further on these issues, we expect our results

to have more general applicability including such questions of interest to particle physics

as well.

3 An explicit example

In this section we shall apply the general formulae considered above to the entire deformed

conifold, and construct explicitly the single field inflaton potential from the racetrack su-

perpotential (2.5), following some of the steps outlined in [6].

3.1 Racetrack from multiple brane stacks

We shall in particular focus on the supersymmetric D7 brane embedding established in [37],

it is the only currently known embedding in the deformed conifold such that no additional

world volume gauge flux is required [56]. In order for the two stacks of D7 branes to be

non-intersecting, we shall take the four cycles on which they wrap to be given by

f1(z
α) = z1 − µ1 , f2(z

α) = z1 − µ2 , µ1 , µ2 ∈ R (3.1)

Thus, we have two stacks of D7s wrapping holomorphic four cycles of identical topology, but

extend to different depths |µ1|2/3 and |µ2|2/3 into the warped throat.4 Such embedding (3.1)

preserves the SO(3) subgroup of the SO(4) isometry group for both the singular and the

deformed conifold.

We can now apply the explicit expression (2.4) to the superpotential generated by two

stacks of D7 branes wrapping on the four cycles described above. First we note that the

4 Differing from [6], we have not restricted µ1 and µ2 to be positive, in fact the requirement of angular

stability would give constraints on the value of µ1, µ2 and A0, B0.

– 6 –
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inverse metric for the full deformed conifold as derived in appendix B is given by:

kīj =
r3

∂2k(τ)
∂τ2

[(
δīj − ziz̄j

r3

)

+
r3B(τ)

A(τ)

((
1 − ǫ4

r6

)
δīj +

ǫ2

r3

(
zizj + z̄iz̄j

r3

)
−
(
ziz̄j + z̄izj

r3

))]
,

r3
B(τ)

A(τ)
= coth τ

(
∂2

τk(τ)

∂τk(τ)
− coth τ

)
, i , j̄ = 1, 2, 3 . (3.2)

Here we have introduced the dimensionless radial coordinate τ which is valid for the en-

tire deformed conifold, and is related to the usual radial coordinate r via the relation

r3 = ǫ2 cosh τ [60]. For more details on deformed conifold, see appendix B. After some

tedious but straightforward computations, one can obtain the F-term scalar potential for

the embeddings defined in (3.1):

VF = VKKLT + ∆V, (3.3)

VKKLT =
κ2|S0(z1, ρ)|2

3U(τ, σ)2

(
U(τ, σ) + (ǫ4/3γ)P (τ) + 6Re

[
W (z1, ρ)

S0(z1, ρ)

])
, (3.4)

∆V =
κ2|S1(z1, ρ)|2

3U(τ, σ)2

(
T (z1, z̄1)

γ
+ 2coth τL(τ)Re

[
S0(z1, ρ)

S1(z1, ρ)

(
z̄1 −

ǫ2

r3
z1

)])
. (3.5)

where W (z1, ρ) was defined in (2.5) with the embedding functions (3.1) substituted and

the various other functions are given by:

U(τ, σ) = 2σ − γk(τ) , (3.6)

S0(z1, ρ) = a1A0

(
1 − z1

µ1

)1/n1

e−a1ρ + a2B0

(
1 − z1

µ2

)1/n2

e−a2ρ

= −∂W (z1, ρ)

∂ρ
, (3.7)

S1(z1, ρ) =
A0

n1µ1

(
1 − z1

µ1

)1/n1−1

e−a1ρ +
B0

n2µ2

(
1 − z1

µ2

)1/n2−1

e−a2ρ

= −∂W (z1, ρ)

∂z1
, (3.8)

P (τ) =
3

2

(sinh(2τ) − 2τ)4/3

24/3 sinh2 τ
,

L(τ) =
3

4

(sinh(2τ) − 2τ)

sinh2 τ
, (3.9)

T (z1, z̄1) =
1

∂2
τk

{
(r3 − |z1|2) + r3

B(τ)

A(τ)

[
(r3 − |z1|2)

(
1 − ǫ4

r6

)

−
(
z1 −

ǫ2

r3
z̄1

)(
z̄1 −

ǫ2

r3
z1

)]}
.

Here we have seperated the total F-term scalar potential VF into two parts VKKLT and

∆V , where ∆V indicates the additional contribution due to the non-trivial dependence of

the superpotential on the mobile D3 position. As shown in [6], it is crucial to have such

– 7 –
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additional contribution for slow roll inflation, as it allows us to fine-tune the inflaton po-

tential such that the slow-roll parameter η can be made vanishingly small piece-wise. Most

of the e-folds are then generated near the inflection point where the slow-roll parameter η

vanishes. Before moving on, let us close this section by noting that we can first stabilize

the axion ξ in the complex Kähler modulus ρ at ξ = 0 which corresponds to a minimum of

the scalar potential in the ξ direction as discussed in [35], unless A(0) +B(0) < 0, W0 < 0

and a1 < a2 which yields a maximum at ξ = 0.

3.2 Stable angular trajectory

The choice of D7 embedding in (3.1) is made not only because it is relatively symmetrical

and remains supersymmetic without the presence of worldvolume flux, but more impor-

tantly, for the case of a single stack of D7-branes, it was shown to be the only known D7

embedding with an angular stable trajectory. In [21], such trajectory has been extended

to the entire deformed conifold, and is given by:

z1 = −ǫ cosh τ
2
, (3.10)

The existence of such trajectory is crucial for obtaining a single field slow roll inflation

model5 As shown in detail in appendix C, the above trajectory remains angular stable when

the second stack of D7s is introduced, as expected from symmetry argument. However

to demonstrate the stability of the trajectory, it is crucial to simultaneously adjust the

parameters specifying the potential such as µ1,2 and the deformation parameter ǫ, hence

their values are constrained. In the later section, we shall consider the situations where the

mobile D3 brane moving in the region where |µ2|2/3 < r < |µ1|2/3 as well as r < |µ1,2|2/3

and obtain the inflaton potentials. Having the F-term scalar potential valid for the entire

deformed conifold throat allows us to consider different hierarchies between µ1 and µ2. For

each case, we will numerically check the angular stability for the parameters yielding the

inflationary trajectory.

Along the angular stable trajectory, the resultant scalar potential with the angular

degrees of freedom integrated out is given by:

VF (τ, σ) =
κ2S0(τ, σ)2

3U(τ, σ)2

[
U(τ, σ) + 6

(
W (τ, σ)

S0(τ, σ)

)
+ 6Σ(τ, σ)

]
(3.11)

where

Σ(τ, σ) = (ǫ4/3γ)
(
K(τ) sinh

τ

2

)2
(
K(τ) cosh

τ

2
− S1(τ, σ)

2ǫ1/3γS0(τ, σ)

)2

(3.12)

K(τ) =
(sinh 2τ − 2τ)1/3

21/3 sinh τ
. (3.13)

and W (τ, σ) , S0,1(τ, σ) denote functions W (τ, σ) and S0,1(z1, ρ) defined in (2.5)

and (3.7), (3.8) with z1 = −ǫ cosh τ
2 and ρ = σ substituted.

5Notice that along (3.10), there remains a SO(2) residual symmetry group, however such light angular

degree of freedom has been shown to decouple from the canonical inflation [21], and subsequently we shall

not consider it in our discussion.
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We can now introduce the canonical inflaton field φ(τ), which can be readily derived

from the DBI action of a mobile D3 in the warped deformed conifold, with the explicit

metric given by (B.11):

φ(τ) =

√
T3

6

∫

τ
dτ ′

ǫ2/3

K(τ ′)
. (3.14)

One can see this definition has the following asymptotic limits:

τ ≫ 1 : φ(τ) →
√

3T3

2
r , (3.15)

τ ≪ 1 : φ(τ) →
√
T3

25/631/6
ǫ2/3τ . (3.16)

These limits would be useful when one tries to approximate the radial dependence of the

volume modulus σ near the tip region and for investigating the possible parameter choices

for the inflationary trajectory at large radius. One should also note that at generic radius,

the canonical inflaton is only given by the integral expression (3.14), and conversely we

should regard τ(φ) as implicit function of the canonical inflaton. For the calculations of

slow roll parameters, however, the chain rule can be readily applied.

3.3 Volume stabilization and single field inflation

To study volume stabilization and hence obtain the effective single field inflaton potential,

one should also include the D3 − D3 potential

VD3D3(τ, σ) =
D0

U(τ, σ)2

(
1 − 3D0

16π2T 2
3 |y − ȳ|4

)
. (3.17)

Here D0 = 2T3a
4
0 and a0 = e−2πK/3gsM is the warp factor at the tip of the deformed conifold

where the D3 is located; |y− ȳ| is the separation between the D3 and the D3 branes. The

leading term here gives a positive contribution to the total potential energy, and plays the

crucial role of uplifting the KKLT type AdS minimum to a dS one [23]. The remaining

contribution in (3.17) corresponds to the warped D3−D3 Coulombic attraction. There can

also be further distant uplifting source, e.g. D3 contributing to the vacuum energy or D7

branes carrying SUSY-breaking fluxes [61]. In the large volume limit, the most dominant

term can be encoded as6

Vother =
Dother

U(τ, σ)2
, (3.18)

such potential plays an important role in giving a small positive cosmological constant at

the end of inflation after the D3 − D3 brane annihilation [21].

We now derive the radial dependence of the stabilized volume σ⋆(φ) from the two

field potential

V(τ, σ) = VF (τ, σ) + VD3D3(τ, σ) + Vother(τ, σ) (3.19)

6The precise U(τ, σ) dependence in fact varies for different distant SUSY breaking sources, for D3 the

potential Vother ∼ U(τ, σ)−2 and for D-term uplifting [61] induced by D7-branes carrying SUSY break-

ing flux, Vother ∼ U(τ, σ)−3. For concreteness, we consider the former case which is the most dominant

contribution in the limit U(τ, σ) ≫ 1.
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which satisfies the equation:
∂V(τ, σ)

∂σ
σ⋆

= 0 . (3.20)

This is the so-called “adiabatic approximation”, and the basic assumption here is that at

every given point along the radial direction, the effective mass for the volume modulus σ is

always greater than that for the radial direction, even though the mass hireachy is not as

large compared with the broken angular isometry direction such that it is stabilized at a

constant value, but rather it is stabilized at its instantaneous minimum in the τ −σ plane.

Allowing for the volume modulus σ(τ) to vary with the radial coordinate is important to

ensure angular stability and to obtain single field inflation.

Due to the exponential dependence of the V(τ, σ) on σ, the equation (3.20) is a tran-

scendental equation usually solved numerically. However, at least for n1 = n2 an approx-

imate analytic approach was adopted in [6], and it allows to obtain a qualitative under-

standing of the resultant potential. Assuming that in the large volume limit σ ≫ 1, which

can be ensured by having a large hierachy between |S0(0)| and |W0|, one can set the σ

dependence in U(τ, σ) to a fixed value σ0, where σ0 is the particular solution to (3.20) with

τ = φ = 0. Within such an approximate analytic approach, equation (3.20) becomes a

quadratic equation of the variable X⋆ = exp(aσ⋆(φ)). To include the dependence on φ(τ),

we note that when σ0 is large, the φ dependence only gives a small change in the stabilized

volume, and we can perform a double expansion in 1/σ0 and small φ(τ). After solving the

quadratic equation for X⋆(τ), one can deduce that for n1 = n2 = n,

aσ⋆(φ) ≈ aσ0

(
1 + b2

(
φ

Mp

)2
)
, (3.21)

b2 =
1

(aσF )

(
1

3
+

Γ

8

)
+

1

(aσF )2

(
(4s− 7)

6
− Γ

2

)
+ O(1/σ3

F ) , (3.22)

Γ =

(
2

3

)2/3 A0α1(1 + α1)
1/n−1 +B0α2(1 + α2)

1/n−1

(nβ2)(A0(1 + α1)1/n +B0(1 + α2)1/n)
. (3.23)

Here, σF is the solution to DσW = ∂σVF (τ, σ) = 0 at the tip of the deformed conifold, and

the parameter s is the uplifting ratio given by s = (D0+Dothers)/U2(σF ,0)
VF (σF ,0) . In (3.21) we have

also introduced the following dimensionless parameters:

α1,2 =
ǫ

µ1,2
, β =

√
T3

6

ǫ2/3

Mp
, (3.24)

which will be useful later for finding workable parameter sets for the inflationary potential.

Geometrically, α1,2 measure the depth of each stack of D7-branes within the deformed

conifold region, so that α1,2 → 1 corresponds to sending the D7s into the highly warped

region. On the other hand, β is proportional to the warped factor at the tip ∼ e−2πK/3gsM

which can be deduced from the relation between four dimensional Planck mass Mp and the

warped compact volume.

Such semi-analytic expression for the stabilized volume obtained in the near tip region

is expected to break down at large radius, including the definition of the canonical inflaton.
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It would be interesting to consider the resultant inflaton potentials derived from the semi-

analytic (3.21) and the numerical solutions to (3.20), and to see how they differ in the CMB

and other inflationary predictions. The semi-analytic expression is expected to capture the

qualitative feature within its regime of validity, for our case the resultant single field inflaton

is then given by:

V(τ(φ), σ⋆(φ)) =
κ2S0(τ, σ⋆(τ))

2

3U(τ, σ⋆(τ))2

[
U(τ, σ⋆(φ)) + 6

(
W (τ, σ⋆(τ)

S0(τ, σ⋆(τ))

)
+ 6Σ(τ, σ⋆(τ))

]

+
D(τ)

U2(τ, σ⋆(τ))
.

D(τ) = D0

(
1 − 3D0

16π2T 2
3 |y − ȳ|4

)
+Dothers . (3.25)

This potential will allow us to demonstrate, modulo microscopic compactification

constraints, that sufficient number of e-folds can be generated by tuning the

parameters involved.

4 On gravitino mass and the inflation scale

Before presenting the explicit parameter sets generating slow-roll inflation, we would like to

pause here to discuss the issue of gravitino mass and the inflation scale raised in [22], and

consider the possiblity of obtaining a small gravitino mass using our superpotential (2.5).

At a supersymmetric minimum of an N = 1 SUGRA F-term scalar potential, DΣW =

0 for all moduli, and thus we naturally have an AdS vacuum with a negative cosmological

constant given by −3eK/M2
p
|W (σF )|2

M4
p

.7 In the KKLT scenario [23], a dS vacuum is then

constructed by introducing extra uplifting terms via an D3-brane at the tip of the warped

throat or other distant sources, which retains the shape of the potential barrier to avoid

decompactification. The uplifting only shifts the stabilized volume σF by a small amount

to σ0 ∼ σF , and the gravitino mass in the uplifted vacuum is then given by m2
3/2(σ0) =

eK/M2
p
|W (σ0)|2

M4
p

≈ eK/M2
p
|W (σF )|2

M4
p

. Therefore the gravitino mass is tied to the depth of the

original AdS minimum |VAdS|/M2
p .

As pointed out in [22], in the simplest case where the non-perturbative superpotential

is only generated by a single stack of D7 branes (or Euclidean D3 branes), such that

W (z, ρ) = W0 +A(z)e−aρ; the Hubble scale for the various inflationary models constructed

from the resultant uplifted de Sitter vacuum will obey the following bound

H > m3/2(σ0) . (4.1)

One can of course raise the scale of inflation, however this would distort the potential

barrier and lead to runaway decompactification. This bound (4.1) suggests that there

some tension between high scale inflation (favored by the observed amplitude of the power

spectrum) and low scale supersymmetry breaking (motivated by the hierarchy problem).

7Here for the clarity we have restore the relavant four dimensional Planck Mass Mp.
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To resolve such issue, it was shown by generalizing to more than a single non-

perturbative instanton superpotential, there exists additional supersymmetric Minkowski

vacua given by [22, 62]:

W (σMink.) = 0 , ∂σW σMink.
= 0 , (4.2)

such that in this vacuum, the gravitino mass can be made vanishingly small. This is a

special solution to DσW = 0, hence still a minimum of the scalar potential VF in the σ

direction. Notice, however, additional conditions need to be imposed on the parameters in

the superpotential (2.5), e.g., W0, A0, B0 n1 and n2, for such vacuum to exist. Importantly,

in such vacuum, the gravitino mass is no longer tied to the height of the potential barrier.

Therefore, inflation can proceed at a high scale without pushing the gravitino mass outside

the reach of current and upcoming accelerators.

A remaining question is whether one can construct a viable inflation model in this

scenario while evading the bound in [22]. Previous attempts [24–29] have focused on using

Kähler modulus as the inflaton. Here, the inflaton is an open string mode. As we shall

see, having the inflaton in the open string sector allows more freedom in model building.

Given that the gravitino mass is disentangled from the magnitude of the potential barrier

stabilizing the minimum, the additional energy from the open string mode may allow

inflation to take place at a higher energy scale than the gravitino mass, without leading to

runaway decompactification. In the following, we shall demonstrate that slow-roll inflaton

potential can be constructed with appropriate choices of microscopic parameters and that

the Hubble scale can exceed the gravitino mass in the uplifted vacuum.

5 Sample parameters and inflationary trajectories

In this section we present some explicit examples of the parameter sets which allow for

a sufficient number of e-folds to be generated. We shall consider three different cases

characterized by different relative values of the embedding parameters µ1 and µ2 and the

prefactors8 A0 and B0. In the first two cases, the mobile D3 brane has different relative

positions to the moduli-stabilizing D7s. Without loss of generalities, we shall consider the

simplified situation with n1 = n2 = n, and inflation takes place after uplifting an AdS

vacuum. In the third case, we shall consider inflation upon uplifting a Minkowski vacuum

where it is therefore crucial to have n1 6= n2.

For a sustained period of inflation, the slow-roll parameters ε, η given by

ε(φ) ≡ 1

2

(
1

V(φ)

dV(φ)

dφ

)2

, η(φ) ≡ 1

V(φ)

d2V(φ)

dφ2
, (5.1)

need to remain small i.e. ε, |η| ≪ 1. The number of e-folds before the end of inflation is

then given by

N(φ) =

∫ φ

φe

dφ′√
2ε(φ′)

. (5.2)

8For a Euclidean D3-brane, the prefactor represents a one-loop determinant of fluctuations around the

instanton. For D7-branes, the prefactor comes from a threshold correction to the gauge coupling on the

D7-branes.
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n A0 B0 α1 α2 β W0 s p σF m3/2(σ0)

8 1 0.95 1/100 1/65 1/309 3.349 × 10−4 1.05 0.9 13.6799 2.10456× 10−6

Table 1. Compactification data for Case A

0.09 0.10 0.11 0.12 0.13 0.14
Φ�Mp

5.688 ´ 10-13

5.689 ´ 10-13

5.69 ´ 10-13

5.691 ´ 10-13

5.692 ´ 10-13

V

0.09 0.10 0.11 0.12 0.13 0.14
Φ�Mp

-3

-2

-1

1

Η

Figure 1. Case A: The inflaton potential V(φ) in Planck units and the slow-roll parameter η near

the inflection point.

Here φe denotes the value of φ when inflation ends, that corresponds to ε(φe) = 1. In

each of the three cases, sufficient number of e-folds (? 60) relies on the existence of an

“inflection point” in V(φ), where η = 0 and in its vicinity ε≪ 1. We shall demonstrate such

point can be obtained with judicial choices of the allowed microscopic parameters, and we

calculate (5.2) numerically generated around the inflection point since this region is where

the majority of e-folds are expected to be generated. It is important to note though that

it is possible to calculate the total number of e-folds using our potential with appropriate

initial and final conditions, since it is valid in the entire deformed conifold including the tip

region where the branes annihilate ending inflation. For each set of parameters used, we

also check the angular stability of the resultant trajectory in appendix C. Notice that the

inflection point inflation is known to suffer from the “overshoot problem” [63, 64], such that

the initial field position needs to be near the inflection point itself to generate large number

of e-folds. Here we refrain from discussing further this issue, and simply refer the readers

to [63, 64]. In obtaining the numerical number of e-folds, we shall simply assume that

inflaton indeed rolls through the inflection point and perform the integration using (5.2)

with upper and lower limits as shown in the various figures.

5.1 Case A: 0 < r < |µ2|2/3 < |µ1|2/3

In this simplest case, both stacks of D7 branes are far from the tip region and inflation

takes place at r < |µ1,2|2/3. This case is very similar to the configuration studied in [6].

Notice however it is still necessary for the two stack of D7 branes to be seperated at a

distance larger than the local string length to avoid the presence of light 7-7 open string

modes (which can lead to the disappearance of the superpotential (2.5)). While inflation

is UV sensitive, it is not very sensitive to the addition of extra D7-branes at large radial

distance. A sample set of parameters is listed below. The potential becomes very flat in

the region 0.072 < φ/Mp < 0.148, near the inflection point φ/Mp ≈ 0.1105. The number

of e-folds generated in this region is around N ≈ 107.

– 13 –



J
H
E
P
0
3
(
2
0
0
9
)
0
8
3

n A0 B0 α1 α2 β W0 s p σF m3/2(σ0)

8 1 0.001 1/100 1/3 1/315 3.349 × 10−4 1.065 0.9 12.7524 2.31773× 10−6

Table 2. Compactification data for Case B

0.09 0.10 0.11 0.12 0.13 0.14
Φ�Mp

9.053 ´ 10-13

9.054 ´ 10-13

9.055 ´ 10-13

9.056 ´ 10-13

9.057 ´ 10-13

V

0.10 0.15 0.20 0.25
Φ�Mp

-8

-6

-4

-2

Η

Figure 2. Case B: The inflaton potential V(φ) in Planck units and the slow-roll parameter η near

the inflection point.

In table 1, A0, B0 and W0 have mass dimension three and are expressed in Planck

units; m3/2(σ0) is the gravitino mass in Planck unit in the resultant uplifted dS vacuum;

the parameter p is defined such that Dothers

D0
= p

(1−p) . It is interesting to note that the

Hubble scale in this case is clearly less than the gravitino mass, as expected from the

uplifting of a generic supersymmetric AdS minimum [22].

5.2 Case B: 0 < |µ2|2/3 < r < |µ1|2/3

This case is different from the previously considered configuration in [6], where we have a

large hierarchy between the embedding parameters of the two D7-brane stacks, and most

of the e-folds are generated as the mobile D3-brane moves between them. For the set of

parameters listed below, the near flat region in V(φ) is around 0.072 < φ/Mp < 0.145 with

the inflection point located around φ/Mp ≈ 0.11. The number of e-folds generated in that

region is N ≈ 146. Again, the Hubble scale is less than the gravitino mass which is a

generic feature in uplifting an AdS vacuum in the simplest KKLT scenario [22].

Notice that in table 2, we have performed a 10−3 tuning between A0 and B0 to obtain

an inflection point inflaton potential. Without such tuning, i.e., |A0| ∼ |B0|, due to can-

cellation of the forces, one would instead obtain generically a metastable local de Sitter

minimum which localizes the mobile D3 brane at some intermediate radius within the de-

formed conifold. From this perspective, inflation can be regarded as accidental in such two

stack configurations, resulting from additional tuning of an otherwise metastable minimum.

5.3 Case C: A0B0 < 0

This is arguably the most interesting case. Instead of beginning with an AdS vacuum, we

first fine-tune W0 to obtain an additional supersymmetric Minkowski vacuum at σ = σMink
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n1 n2 A0 B0 α1 α2 β W0 p σMink m3/2(σ0)

38 40 1 -0.9 1/80 1/75 10/2993 −2.29481× 10−3 0.9 18.948 3.29719× 10−8

Table 3. Compactification data for Case C

as in [22].

σMink =
1

a1 − a2
log

∣∣∣∣∣−
A0

B0

a1(1 + α1)
1

n1

a2(1 + α2)
1

n2

∣∣∣∣∣ , (5.3)

W0 = −A0(1 + α1)
1

n1

∣∣∣∣∣−
A0

B0

a1(1 + α1)
1

n1

a2(1 + α2)
1

n2

∣∣∣∣∣

−
a1

a1−a2

−B0(1 + α2)
1

n2

∣∣∣∣∣−
A0

B0

a1(1 + α1)
1

n1

a2(1 + α2)
1

n2

∣∣∣∣∣

−
a2

a1−a2

. (5.4)

Notice that without such fine-tuning, we would only have a single AdS vacuum in the F-

term scalar potential, and the scale of SUSY breaking is large and tied to the barrier height.

In the Minkowski vacuum, however, the scale of SUSY breaking is manifestly zero. When

a suitable extra uplifting terms are included,9 the local metastable minimum still exists

to avoid runaway decompactification. Furthermore, even when the radial dependence is

included, it only causes a small shift in σ, hence the resultant gravitino mass remains small

as the moblie D3 brane moves down the throat.

For the set of parameters listed above, the inflection point is near φ/Mp ≈ 0.127, and around

257 e-folds are generated in the region of field space where 0.12 < φ/Mp < 0.14. Most

importantly, the Hubble scale in this case is ≈ 8.89× 10−6 in Planck units, which is about

270 times larger than the gravitino mass m3/2(σ0). While this provides a proof of concept

that the Hubble scale during inflation can exceed the gravitino mass, further parameter

scanning is needed to show that the observed amplitude of the power spectrum and TeV

scale soft masses can be simultaneously obtained. Such analysis also allows us to quantify

the degree of fine-tuning involved, for some related recent work, see [65, 66]. It is interesting

to compare inflation on an “open racetrack” with the racetrack inflationary scenario in [35]

where the Kahler modulus (more precisely, the axion component) which appears in the

non-perturbative superpotential also plays the role of the inflaton. Clearly, if the inflaton

is an additional field (here, an open string mode) other than the modulus being stabilized

by the racetrack potential, one finds more flexibilities in model building. For example, it

has been argued that in racetrack inflation, additional non-perturbative terms beyond the

minimal racetrack potential seems necessary for inflation to occur [27]. This is not the

case for the “open racetrack”. Furthermore, inflation is sensitive to dimension six, Planck

suppressed corrections to the inflaton potential. Therefore, a global shift symmetry was

9Notice that the uplifting ratio “s” ceases to be meaningful in this case, as VF (σMink) = 0.
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Figure 3. Case C: The Scalar Potential at τ = 0 before and after uplifting

0.12 0.13 0.14 0.15
Φ�Mp

2.36945 ´ 10-10

2.3695 ´ 10-10

2.36955 ´ 10-10

2.3696 ´ 10-10

2.36965 ´ 10-10

2.3697 ´ 10-10

V

0.12 0.13 0.14 0.15
Φ�Mp

-0.5

0.5

Η

Figure 4. Case C: The Inflaton Potential V(φ) in Planck Unit and slow-roll parameter η near the

inflection point.

invoked in racetrack inflation to protect the inflaton potential from further UV corrections.

Here, no such symmetry is imposed and because a lot is known about the local geometry

of the throat, not only can we compute the renormalizable part of the inflaton potential,

we can apply gauge/string duality to characterize such corrections due to bulk physics [7].

6 Discussions

In this paper, we present a variant of warped D-brane inflation by introducing multiple

stacks of moduli-stabilizing D7-branes in a warped throat. We used the warped deformed

conifold as an illustrative example, though the open racetrack inflationary scenario intro-

duced here can be adopted to more general backgrounds. We have considered various

configurations of D7-branes with different relative positions with respect to the mobile

D3-brane, leading to qualitatively distinct inflationary scenarios. Furthermore using the

racetrack-like superpotential, we demonstrated that a supersymmetric Minkowski vacuum

can be obtained prior to uplifting and constructed an explicit inflationary model where

the Hubble scale exceeds the gravitino mass. Thus, the phenomenological bound on the

inflation scale, i.e., H > m3/2(σ0) as pointed out by [22] can be evaded (albeit with fine-

tuning), and to the best of our knowledge, this is the first realization of such models in the

context of brane inflation.

There are a number of interesting directions one can further pursue. A natural direction

is to generalize the analysis here to configurations involving other D7-brane embeddings

and to construct explicit models. An obvious obstacle to be overcome, however, is to ob-

tain an angular stable trajectory. This can be difficult in the intermediate region; but if

there is a large separation between different stacks of D7-branes, we expect there exists
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region in between the D7-branes where single field inflation can be realized. It is important

to note however that the requirement of an angular stable trajectory is imposed only for

calculational convenience as the resulting dynamics of an effective single field model can

be analyzed semi-analytically. A priori, one can numerically solve for the inflationary tra-

jectory of a multi-field model, and in fact such multi-field models are interesting because

their dynamics can lead to interesting non-Gaussian features in the CMB.10 Besides the

technical difficulties of finding angular stable trajectories, generic configurations of multi-

ple D7-brane stacks can intersect along their worldvolume. The light open string modes

localized at these intersections can modify the non-perturbative gaugino condensate terms

in the superpotential. It is therefore important to study these modifications in order to

realize these configurations concretely.

We have demonstrated as a proof of concept that high scale inflation and low scale

supersymmetry can in principle coexist in the current setup. However, whether there exists

a set of microscopic parameters that give rise to predictions compatible with cosmological

data and at the same time having a supersymmetry breaking scale in the phenomenolog-

ically relevant range requires more extensive numerical work. It would be interesting to

perform a scan of the microscopic parameter space and compare the corresponding cosmo-

logical signatures with data. Such analysis may also quantify the amount of fine-tuning

needed to evade the bound in [22]. Of course, a quantitative study of soft supersymmetry

breaking masses would require an embedding of the Standard Model and the supersymme-

try (SUSY) breaking/mediation sector in warped compactifications. Since the masses of

the messenger fields depend on the separation between the Standard Model and the SUSY

breaking branes (see, e.g., [72]), the mechanism of stabilizing the separation between D-

branes at a finite tunable distance discussed in this work may be relevant for embedding

various supersymmetry breaking scenario in string theory. We hope to return to all these

interesting issues in the future.

Acknowledgments

We are grateful to Konstantin Bobkov, Fang Chen, Jim Cline, Shamit Kachru, Renata

Kallosh, Andrei Linde, Yu Nakayama, Peter Ouyang, Fernando Quevedo, Stuart Raby,

Alexander Westphal, and Piljin Yi for discussions. The work of HYC and GS was supported

in part by NSF CAREER Award No. PHY-0348093, DOE grant DE-FG-02-95ER40896,

a Research Innovation Award and a Cottrell Scholar Award from Research Corporation, a

Vilas Associate Award from the University of Wisconsin, and a John Simon Guggenheim

Memorial Foundation Fellowship. HYC and GS also thank the Stanford Institute for

Theoretical Physics and SLAC for hospitality and support while this work was written.

LYH is supported by the Gates Cambridge Trust.

10For recent work on deriving the bispectrum of general multi-field inflation, extending the single field

result of [67], see [68, 69] (see also [70] for a restrictive case, and [71] for multi-brid inflation).

– 17 –



J
H
E
P
0
3
(
2
0
0
9
)
0
8
3

A Gaugino condensate in the deformed conifold

Here we demonstrate that the D3-brane moduli dependence of the gaugino condensate

is independent of the presence of additional D7 brane worldvolume flux. We shall first

discuss this from a closed string perspective following [6, 53], and then present a supporting

open string calculation by generalizing the results in toroidal orientifolds [55] to include

worldvolume flux.

A.1 Closed string perspective

In the singular conifold limit, the dependence of the D7 gaugino condensate on the position

of mobile D3 was deduced in [53]. Essentially the calculation amounts to taking into

account the perturbation of the D3-brane on the warp factor of the holomorphic four

cycle wrapped by the D7-branes. From the DBI action of D7-branes, this translates into a

position dependent shift in the four dimensional Wilsonian coupling, which, by dimensional

transmutation, becomes the resultant gaugino condensate. As shown in [53], the total

warped four cycle volume with the backreaction of the D3-branes can also be expressed as

the real part of a holomorphic function, this in turns ensures the holomorphy of the D7

gauge coupling.

To generalize this result in the deformed conifold, one first notices that there is an

extra bulk complex three form flux G3 = F3 − τH3 also present in this background [73].

The supersymmetric condition on the D7 brane can be given in geometrical terms as

Ĵ ∧ F = 0 . (A.1)

Here Ĵ is the pull-back of the bulk Kähler form onto the D7 brane, F = B̂2 +2πα′F2 is the

gauge invariant 2-form, where B̂2 is the pullback of the supergravity NS-NS 2-form, and

F2 is the gauge field strength on the worldvolume of the D7-branes. The condition (A.1)

also needs to be supplemented with the Bianchi identity:

dF = Ĥ3 . (A.2)

While these conditions can be satisfied without the inclusion of worldvolume flux for the

Kuperstein embedding, other choices of D7-brane embeddings in general require a non-

trivial F2, and in many cases, the solutions can only be constructed numerically [56].

As shown in [6], if the supersymmetric condition (A.1) is satisfied, the warped factor

dependence on F canceled out between the DBI and the Chern-Simons terms at the leading

non-trivial order of the small four dimensional gauge field strength expansion. At this order,

F only contributes a cut-off dependent shift to the four cycle volume, which is independent

of the mobile D3 position, therefore F only changes the overall magnitude of the gaugino

condensate, not its dependence on the moduli. Such conclusion is consistent with the

preservation of residual global symmetry and the holomorphy of the superpotential.

A.2 Open string perspective

To support our discussion about the effect of the worldvolume flux on the D7 gaugino

condensate, here we present a complementary open string calculation in simple toroidal
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orientifolds, generalizing [55]. As is well known, one loop open string amplitudes are

related to closed string tree level exchanges between the boundary states representing the

D-branes via a modular transformation of string world-sheet coordinates. We review here

the tools needed for these computations.

The calculations are particularly simple if we use the light-cone gauge fixed GS bound-

ary states. In this framework the Dp branes are represented as Euclidean p+ 1 branes. In

the light-cone gauge p is limited to −1 < p < 7. Consider boundary states corresponding

to a Dp brane. They satisfy the following boundary conditions

∂XI − T p
IJ ∂̄X

J |BI1...Ip+1
, ζ > = 0, (A.3)

Sm + iζMp
mnS̃

n|BI1...Ip+1
, ζ >= 0, S̃ṁ + iζMp

ṁṅS̃
ṅ|BI1...Ip+1

, ζ > = 0, (A.4)

where ζ = ±1 for brane and anti-brane respectively. The matrices Mp
mn and Mp

ṁṅ deter-

mine the supersymmetry preserved by the boundary state and are given by [74]

Mp
mn = (γ1γ2 . . . γp+1)mn, Mp

ṁṅ = (γ1γ2 . . . γp+1)ṁṅ. (A.5)

These γ matrices are building blocks of the eight-dimensional gamma matrices and are

defined in [75]. The matrix T p is an element of SO(8) (i.e. rotations along the transverse

directions ) and is expressible as

T p = exp (ΩABΣAB), (A.6)

where ΣAB are SO(8) generators in the vector representation. For a (Euclidean) Dp-brane

stretched along {x1 . . . xp+1} and in the absence of worldvolume gauge field strength,

T p =

(
−Ip+1 0

0 I7−p

)
, (A.7)

where In denotes an n × n unit matrix. which basically defines the Neumann boundary

condition along the first p + 1 directions and the Dirichlet boundary condition along the

remaining 7 − p directions. The boundary state satisfying the boundary conditions above

is then given by [74]

|BI1...Ip+1
, ζ >= exp

(∑

q>0

(
1

q
T p

IJα
I
−qα̃

J
−q

)
− iMp

mnS
m
−qS

n
−q

)
|B0(I1...Ip+1), ζ > (A.8)

where

|B0(I1...Ip+1), ζ >= Tp[(T p
IJ |I > ⊗|J > +iζMp

ṁṅ|ṁ > ⊗|ṅ >)]p=0. (A.9)

The normalisation Tp is determined by comparing the tree level exchange between two

parallel branes with the corresponding one-loop open string calculation, and can be iden-

tified with the Dp-brane tension. The effect of worldvolume gauge fields can be captured

by turning on a flux condensate on the boundary state. This alters the boundary condi-

tion satisfied by the closed string at the boundary. The boundary conditions along the

Neumann directions are then given by

∂nX
I + FIJ∂tX

J |BI1...Ip+1
, ζ,F >= 0, (A.10)
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where n and t are the normal and tangential directions to the boundary respectively, and

F is the generalized worldvolume flux defined earlier. To rewrite it as in equation (A.3)

above, we have [74]

T p
IJ(F) = −(1 −F)IK(1 + F)−1

KJ . (A.11)

The form of the matrix Mp is also altered since the supersymmetries preserved by the

boundary state is dependent on the worldvolume flux. In fact we have [74]

Mp(F) =

(p+1)/2∏

i=1

1√
1 + f2

i

(1 + fiγ
2i−12i)γ1 . . . γp+1, (A.12)

where F have been arranged in a block-diagonal form, with each block given by
(

0 fi

−fi 0

)
.

The normalization in the presence of flux F is given by

T̃p(F) = Tp

√
det(1 + F). (A.13)

At this point we notice that the form of the DBI action has emerged. From the form

of (A.9), we see that the F dependence of the matrix T determines the coupling of the

boundary state, in the presence of worldvolume flux, to the NS-NS massless modes. Alter-

natively, this matrix can be obtained directly from the DBI action by expanding it about

a (flat) background metric.

With all these ingredients at hand, we are ready to compute the interaction between

a D3 and a D7 brane. In the case under consideration, the D3 stretches along {x5 . . . x8}
whereas the D7 is aligned along {x1 . . . x8}. The background NS two form potential B2

vanishes. We however turn on a non-vanishing (constant) magnetic flux in the {x1 . . . x4}
directions on the D7, which is arranged in a block-diagonal form. i.e.

F2 =




0 F12 0 0 0

−F12 0 0 0 0

0 0 0 F34 0

0 0 −F34 0 0

0 0 0 0 04×4



. (A.14)

In this case we thus have F = 2πα′F2, and so f1 = 2πα′F12 and f2 = 2πα′F34. The

cylinder diagram is then given by

< +, B3+1|∆|B7+1,+,F >, ∆ =

∫
d2z

|z|2 z
L0 z̄L̃0 , (A.15)

where ∆ is the closed string propagator. It gives directly the coupling of the D3 brane

worldvolume scalars to the D7 worldvolume scalars and gauge fields. The contribution of

massless mode (i.e. zero modes) exchange is readily extracted. In fact it is given simply by

< +, B0(x5...x8)|B0(x1...x8),,+,F >= T3T7

√
det(1 + F)

[
tr(T 3T 7(F)) + tr(M3M7(F))

]
.

(A.16)
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The first term gives the contribution of the graviton and dilaton and the second term the

R-R potential. Evaluating explicitly, we have

< +, B0(x5...x8)|B0(x1...x8),+,F >= T3T7

[
−4

(
F 2

12

√
1+F 2

34

1+F 2
12

+F 2
34

√
1+F 2

12

1+F 2
34

)
− 8F12F34

]
.

(A.17)

As a consistency check, at zero F ’s, the contribution is trivially zero. This is consistent

with the fact that the branes interact only via the exchange of gravitons and dilatons and

that they are mutually BPS, such that the net force between them vanishes.

When the magnetic flux in {x1, x2, x3, x4} satisfies the anti-self-dual condition, which

in the case of R4 is equivalent to

F12 + F34 = 0, (A.18)

the D3 branes become decoupled from the D7 world-volume flux. The calculation is un-

altered if we compactify {x1, x2, x3, x4} on a torus, except that an infinite array of D3s is

periodically placed in the covering space. In particular, the decoupling between the branes

under (A.18) continues to hold.

B Some geometric details of the deformed conifold

Here we provide some geometric details about the deformed conifold which were used in

deriving the F-term scalar potential in the main text.

The deformed conifold can be defined as a subspace in C4 by the following con-

straint equation:

z2
1 + z2

2 + z2
3 + z2

4 = ǫ2 , (B.1)

where zα ∈ C , α = 1 , . . . , 4 and the deformation parameter ǫ ∈ R. The radial coordinates

can be related to the norm of the embedding coordinate:

4∑

α=1

|zα|2 = r3 = ǫ2 cosh τ . (B.2)

The Kähler metric of the deformed conifold can be derived from the Kähler potential:

k(τ) =
ǫ4/3

21/3

∫

τ
dτ ′(sinh(2τ ′) − 2τ ′)1/3. (B.3)

Using the embedding condition (B.1), we can substitute away z4 as z4 =

±
√
ǫ2 − (z2

1 + z2
2 + z2

3), and the explicit Kähler metric is given by:

kij̄ = ∂i∂j̄k(τ) = A(τ)Mij̄ + B(τ)Nij̄ , i, j̄ = 1 , . . . , 3 (B.4)

Here we have applied the chain rule from (B.2), the functions A(τ) and B(τ) are given by:

A(τ) =
1

ǫ2 sinh τ

∂k(τ)

∂τ
, B(τ) =

1

ǫ4 sinh2 τ

(
∂2k(τ)

∂τ2
− coth τ

∂k(τ)

∂τ

)
, (B.5)
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whereas the 3 × 3 matrices Mij̄ and Nij̄ are given by:

Mij̄ = δij̄ +
ziz̄j
|z4|2

, (B.6)

Nij̄ = ziz̄j + z̄izj − zizj
z̄4
z4

− z̄iz̄j
z4
z̄4
. (B.7)

The inverse Kähler metric can be calculated in a tedious but straightforward manner, and

the result can be written as:

kīj =
1

(A(τ) + r3 tanh2 τB(τ))

(
Rīj +

(
r3B(τ)

A(τ)

)
Līj

)
=

r3

∂2k(τ)
∂τ2

(
Rīj +

(
r3B(τ)

A(τ)

)
Līj

)
,

(B.8)

with the 3 × 3 matrices Rīj and Līj given by:

Rīj = δīj − ziz̄j
r3

, (B.9)

Līj =

(
1 − ǫ4

r6

)
δīj +

ǫ2

r3

(
zizj + z̄iz̄j

r3

)
−
(
ziz̄j + z̄izj

r3

)
. (B.10)

From these matrices, the various terms in the scalar potential can be calculated readily.

Notice that Lij̄ vanishes as r → ǫ2/3, and the inverse metric (B.8) reduces to the one

derived using the simplified Kähler potential near the tip. While at large r ≫ ǫ2/3 and

ǫ2(eτ/2) ≈ r3, kīj readily reduces to the usual inverse metric for the singular conifold.

One should also note that the complex embedding coordinates can also be ex-

pressed in terms of six real coordinates: {τ ∈ R , ψ ∈ [0, 4π] , θ1,2 ∈ [0, π] , φ1,2 ∈ [0, 2π]},
Ξ = τ + iψ as

z1 = ǫ

[
cosh

(
Ξ

2

)
cos

(
θ1+θ2

2

)
cos

(
φ1+φ2

2

)

+i sinh

(
Ξ

2

)
cos

(
θ1−θ2

2

)
sin

(
φ1+φ2

2

)]
,

z2 = ǫ

[
− cosh

(
Ξ

2

)
cos

(
θ1+θ2

2

)
sin

(
φ1+φ2

2

)

+i sinh

(
Ξ

2

)
cos

(
θ1−θ2

2

)
cos

(
φ1+φ2

2

)]
,

z3 = ǫ

[
− cosh

(
Ξ

2

)
sin

(
θ1+θ2

2

)
cos

(
φ1 − φ2

2

)

+i sinh

(
Ξ

2

)
sin

(
θ1−θ2

2

)
sin

(
φ1−φ2

2

)]
,

z4 = ǫ

[
− cosh

(
Ξ

2

)
sin

(
θ1+θ2

2

)
sin

(
φ1 − φ2

2

)

−i sinh

(
Ξ

2

)
sin

(
θ1−θ2

2

)
cos

(
φ1−φ2

2

)]
.
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By substituting (B.11) into (B.4), with appropriate rearrangement, one can obtain the more

familiar deformed conifold metric in terms of the usual radial and angular coordinates:

ds26 =
1

2
ǫ4/3K(τ)

{
1

3[K(τ)]3
[dτ2 + (g5)2] (B.11)

+ cosh2
(τ

2

) [
(g3)2 + (g4)2

]
+ sinh2

(τ
2

) [
(g1)2 + (g2)2

]}
.

Here the function K(τ) is as defined in (3.13), whereas the one forms are defined as:

g1 =
1√
2
(− sin θ1dφ1 − (cosψ sin θ2dφ2 − sinψdθ2)) ,

g2 =
1√
2
(dθ1 − (sinψ sin θ2dφ2 + cosψdθ2)) ,

g3 =
1√
2
(− sin θ1dφ1 + (cosψ sin θ2dφ2 − sinψdθ2)) ,

g4 =
1√
2
(dθ1 + (sinψ sin θ2dφ2 + cosψdθ2)) ,

g5 = dψ + cos θ1dφ1 + cos θ2dφ2 . (B.12)

The explicit metric (B.11) allows us to derive the expression for the canonical inflaton from

the D3 brane DBI action, and it would also be interesting to obtain an explicit expression

for the inverse deformed conifold metric in terms of the radial and angular coordinates.

C Angular stability analysis

In this appendix, we aim to demonstrate that along the trajectory z1 = −ǫ cosh τ
2 , the

angular directions are indeed stabilized by the presence of two stacks of D7 branes, follow-

ing [6, 21]. The key ingredient for doing so is the angular mass matrix, and in its diagonal

form, the eigenvalues are defined to be:

X = ∓2ǫ cosh
τ

2

∂VF (z1, z̄1)

∂(z1 + z̄1)
= ∓2ǫ cosh

τ

2

(z1∂z1
− z̄1∂z̄1

)

(z1 − z̄1)
VF (z1, z̄1) , (C.1)

Y = −2
(
ǫ cosh

τ

2

)2 ∂VF (z1, z̄1)

∂|z1|2
= 2

(
ǫ cosh

τ

2

)2 (∂z1
− ∂z̄1

)

(z1 − z̄1)
VF (z1, z̄1) , (C.2)

Here we have followed the notations used in [6, 21], and we have assumed that for the

possible field range that inflation can take place, the angular dependences are encoded

exclusively in the F-term scalar potential VF . This assumption is valid in the region where

the Coulombic attraction does not become dominant, as such potential is a function of the

D3−D3 separation which carries both radial and angular dependences in general [21]. We

shall use the explicit expressions (3.4) and (3.5) for VF (z1, z̄1) and the mass eigenvalues
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can be readily calculated as:

∓ X

2C cosh τ
2

=

[
U(τ, σ) + (2β2σ0)P (τ) +

6

S0(τ)
[(A0e

−a1σ(1 + α1 cosh(τ/2))

+B0e
−a2σ(1 + α2 cosh(τ/2))] − 3

|W0|
|S0(τ)|

]
((̃z∆)|S0(z1)|2)

+6|S0(τ)|2(̃z∆)Re

[
(A0e

−a1σ(1 − z1/µ1) +B0e
−a2σ(1 − z1/µ2))

S0(z1)

]

+
ǫ4/3

2β2σ0

(
|S1(τ)|2((̃z∆)T (z1, z̄1)) + T (τ)((̃z∆)|S1(z1)|2)

)

+ coth τL(τ)(̃z∆)

(
S0(z1)S̄1(z̄1)

(
z̄1 −

ǫ2

r3
z1

)
+ S̄0(z̄1)S1(z1)

(
z1 −

ǫ2

r3
z̄1

))
,

(C.3)

Y

2C cosh2( τ
2 )

=

[
U(τ, σ) + (2β2σ0)P (τ) +

6

S0(τ)
[(A0e

−a1σ(1 + α1 cosh(τ/2))

+B0e
−a2σ(1 + α2 cosh(τ/2)))] − 3

|W0|
|S0(τ)|

]
(∆̃|S0(z1)|2)

+6|S0(τ)|2∆̃Re[
(A0e

−a1σ(1 − z1/µ1) +B0e
−a2σ(1 − z1/µ2))

S0(z1)
]

+
ǫ4/3

2β2σ0

(
|S1(τ)|2(∆̃T (z1, z̄1)) + T (τ)(∆̃|S1(z1)|2)

)

+ coth τL(τ)∆̃

(
S0(z1)S̄1(z̄1)

(
z̄1 −

ǫ2

r3
z1

)
+ S̄0(z̄1)S1(z1)

(
z1 −

ǫ2

r3
z̄1

))
,

(C.4)

where C = ǫκ2

3U(τ,σ)2
. Here we have defined the differential operators:

(̃z∆) =
(z1∂z1

− z̄1∂z̄1
)

(z1 − z̄1)
, ∆̃ =

(∂z1
− ∂z̄1

)

(z1 − z̄1)
. (C.5)

which act on expressions involving {z1, z̄1}. It is understood that (C.3) and (C.4) are

evaluated along the trajectory z1 = −ǫ cosh τ
2 , therefore we have substituted the terms

in (C.3) and (C.4) that do not involve the derivatives; whereas the various terms involving

derivatives for A0 , B0 ∈ R can be obtained from a tedious but straightforward computer-

aided calculation. Here we shall not list out the actual expressions as they are long and

not very illuminating. However, for demonstration purpose, we shall consider the small

and large radius limits, where the analysis simplifies. We also numerically checked that in

the intermediate region, angular stability can be achieved.

C.1 Near tip limit

Let us first consider in the near tip limit τ → 0, where all the mass eigenvalues reduce

smoothly to: [21]

M = X + Y , (C.6)
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Figure 5. Mass eigenvalues for Case A (blue) and Case B (green)
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Figure 6. Mass eigenvalues for Case C

evaluated along the trajectory z1 = −ǫ cosh(τ/2). This is given simply by

M ∼ C
[
U(0, σ) + (2β2σ0)P (0) +

(
6

[
A0e

−a1σg1(0) +B0e
−a2σg2(0)

S0(0)

]

−3
|W0|
|S0(0)|

)]
[−2(z̃∆ + ∆̃)|S0(0)|2]

+6|S0(0)|2(z̃∆ + ∆̃)

[
A0e

−a1σg1(0) +B0e
−a2σg2(0)

S0(0)

]
. (C.7)

The terms in the last line are relatively small, especially when n1 ∼ n2. The mass is

dominated by terms in the first two lines. The expression in the large square bracket

is generally negative. We therefore need [−2(z̃∆ + ∆̃)|S0(0)|2] to be negative, which is

easily satisfied.

C.2 Large radius limit

In the large radius limit, the terms that dominate in the small radius limit remain dominant

for positive A0, B0, α1 and α2. Like the near tip limit, the stability depends crucially on

the sign of the terms in the square bracket in (C.3), which is generally negative for small τ

and becomes positive for larger radii. Given that z̃∆|S0(z1)|2 and ∆̃|S0(z1)|2 are generally

negative, this means stability is ensured in the small radius limit, but becomes unstable

for sufficiently large radius. The presence of the extra terms serve to extend the region

of stability. The precise positions where the eigenvalues hit zero depends on the choice of

parameters. In general for smaller β, the extra terms involving T (z1, z̄1) and its derivatives

are enhanced, such that the masses remain positive up to larger τ . For n1 6= n2, i.e. Case

C, the hierarchy between terms is not as obvious and requires an explicit check. We have
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checked the masses for all the cases considered, and found angular stability within the

region where inflation takes place. Notice that to achieve such stability, it is crucial to take

the adiabatic approximation (3.20) and use the numerical solution of σ⋆(τ).
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realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71

[hep-th/0502005] [SPIRES].

[60] P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246

[SPIRES].

[61] C.P. Burgess, R. Kallosh and F. Quevedo, De Sitter string vacua from supersymmetric

D-terms, JHEP 10 (2003) 056 [hep-th/0309187] [SPIRES].

[62] J.J. Blanco-Pillado, R. Kallosh and A. Linde, Supersymmetry and stability of flux vacua,

JHEP 05 (2006) 053 [hep-th/0511042] [SPIRES].

[63] N. Itzhaki and E.D. Kovetz, Inflection point inflation and time dependent potentials in string

theory, JHEP 10 (2007) 054 [arXiv:0708.2798] [SPIRES].

[64] B. Underwood, Brane inflation is attractive, Phys. Rev. D 78 (2008) 023509

[arXiv:0802.2117] [SPIRES].

[65] L. Hoi and J.M. Cline, How delicate is brane-antibrane inflation?, arXiv:0810.1303

[SPIRES].

[66] H.-Y. Chen and J.-O. Gong, Towards a warped inflationary brane scanning,

arXiv:0812.4649 [SPIRES].

[67] X. Chen, M.-X. Huang, S. Kachru and G. Shiu, Observational signatures and

non-gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045]

[SPIRES].

[68] D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, Primordial perturbations and

– 29 –

http://dx.doi.org/10.1016/S0550-3213(97)00311-8
http://arxiv.org/abs/hep-th/9612077
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9612077
http://dx.doi.org/10.1103/PhysRevD.71.026005
http://arxiv.org/abs/hep-th/0404087
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0404087
http://arxiv.org/abs/0807.2428
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.2428
http://dx.doi.org/10.1088/0264-9381/19/22/304
http://arxiv.org/abs/hep-th/0210292
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0210292
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ECONF%2CC040802%2CL024
http://dx.doi.org/10.1088/1742-6596/24/1/018
http://dx.doi.org/10.1088/1742-6596/24/1/018
http://arxiv.org/abs/hep-th/0503195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPSA,163,295
http://arxiv.org/abs/hep-th/0610221
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610221
http://arxiv.org/abs/hep-th/0612129
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0612129
http://dx.doi.org/10.1007/978-3-540-74353-8_4
http://arxiv.org/abs/hep-th/0702059
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0702059
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(P2GC)008
http://dx.doi.org/10.1088/0264-9381/24/21/S04
http://arxiv.org/abs/0708.2865
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.2865
http://dx.doi.org/10.1007/s10714-007-0556-6
http://arxiv.org/abs/0710.2951
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.2951
http://jhep.sissa.it/stdsearch?paper=11%282005%29021
http://arxiv.org/abs/hep-th/0506179
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506179
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151541
http://arxiv.org/abs/hep-th/0502005
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0502005
http://dx.doi.org/10.1016/0550-3213(90)90577-Z
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B342,246
http://jhep.sissa.it/stdsearch?paper=10%282003%29056
http://arxiv.org/abs/hep-th/0309187
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0309187
http://jhep.sissa.it/stdsearch?paper=05%282006%29053
http://arxiv.org/abs/hep-th/0511042
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0511042
http://jhep.sissa.it/stdsearch?paper=10%282007%29054
http://arxiv.org/abs/0708.2798
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.2798
http://dx.doi.org/10.1103/PhysRevD.78.023509
http://arxiv.org/abs/0802.2117
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.2117
http://arxiv.org/abs/0810.1303
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.1303
http://arxiv.org/abs/0812.4649
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.4649
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0701%2C002
http://arxiv.org/abs/hep-th/0605045
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0605045


J
H
E
P
0
3
(
2
0
0
9
)
0
8
3

non-gaussianities in DBI and general multi-field inflation, Phys. Rev. D 78 (2008) 063523

[arXiv:0806.0336] [SPIRES].

[69] F. Arroja, S. Mizuno and K. Koyama, Non-gaussianity from the bispectrum in general

multiple field inflation, JCAP 08 (2008) 015 [arXiv:0806.0619] [SPIRES].

[70] X. Gao, Primordial non-gaussianities of general multiple field inflation, JCAP 06 (2008) 029

[arXiv:0804.1055] [SPIRES].

[71] A. Naruko and M. Sasaki, Large non-Gaussianity from multi-brid inflation,

Prog. Theor. Phys. 121 (2009) 193 [arXiv:0807.0180] [SPIRES].

[72] D.-E. Diaconescu, B. Florea, S. Kachru and P. Svrček, Gauge-mediated supersymmetry

breaking in string compactifications, JHEP 02 (2006) 020 [hep-th/0512170] [SPIRES].

[73] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades

and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

[74] M.B. Green and M. Gutperle, Light-cone supersymmetry and D-branes,

Nucl. Phys. B 476 (1996) 484 [hep-th/9604091] [SPIRES].

[75] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, Cambridge Monographs on

Mathematical Physics, Cambridge University Press, Cambridge U.K. (1988).

– 30 –

http://dx.doi.org/10.1103/PhysRevD.78.063523
http://arxiv.org/abs/0806.0336
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0336
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0808%2C015
http://arxiv.org/abs/0806.0619
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0619
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0806%2C029
http://arxiv.org/abs/0804.1055
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.1055
http://dx.doi.org/10.1143/PTP.121.193
http://arxiv.org/abs/0807.0180
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.0180
http://jhep.sissa.it/stdsearch?paper=02%282006%29020
http://arxiv.org/abs/hep-th/0512170
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0512170
http://jhep.sissa.it/stdsearch?paper=08%282000%29052
http://arxiv.org/abs/hep-th/0007191
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0007191
http://dx.doi.org/10.1016/0550-3213(96)00352-5
http://arxiv.org/abs/hep-th/9604091
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9604091

	Introduction and summary
	Non-perturbative potential in warped throats
	An explicit example
	Racetrack from multiple brane stacks
	Stable angular trajectory
	Volume stabilization and single field inflation

	On gravitino mass and the inflation scale
	Sample parameters and inflationary trajectories
	Case A: 0<r<|mu(2)|**(2/3)<|mu(1)|**(2/3)
	Case B: 0<|mu(2)|**(2/3)<r<|mu(1)|**(2/3)
	Case C: A(0)B(0)<0

	Discussions
	Gaugino condensate in the deformed conifold
	Closed string perspective
	Open string perspective

	Some geometric details of the deformed conifold
	Angular stability analysis
	Near tip limit
	Large radius limit


